Add room and analytics services with CRUD API endpoints

- Implement RoomService for room management and metrics - Add
AnalyticsService for sensor data analytics and trends - Extend models
with Room, RoomCreate, RoomUpdate, RoomInfo - Add room CRUD endpoints to
FastAPI app - Add database connection logic for MongoDB and Redis -
Refactor sensor service logic into SensorService class
This commit is contained in:
rafaeldpsilva
2025-09-22 15:13:14 +01:00
parent 2008ea0e70
commit 02a0d54e14
6 changed files with 1285 additions and 7 deletions

View File

@@ -0,0 +1,377 @@
"""
Analytics service for processing sensor data and generating insights
"""
import logging
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import json
logger = logging.getLogger(__name__)
class AnalyticsService:
"""Service for analytics and data processing"""
def __init__(self, db, redis_client):
self.db = db
self.redis = redis_client
async def query_data(self, query_params) -> Dict[str, Any]:
"""Execute advanced data query"""
try:
# Build query
query = {}
if hasattr(query_params, 'sensor_ids') and query_params.sensor_ids:
query["sensor_id"] = {"$in": query_params.sensor_ids}
if hasattr(query_params, 'start_time') and query_params.start_time:
query.setdefault("timestamp", {})["$gte"] = query_params.start_time
if hasattr(query_params, 'end_time') and query_params.end_time:
query.setdefault("timestamp", {})["$lte"] = query_params.end_time
# Execute query
cursor = self.db.sensor_readings.find(query)
if hasattr(query_params, 'limit') and query_params.limit:
cursor = cursor.limit(query_params.limit)
if hasattr(query_params, 'offset') and query_params.offset:
cursor = cursor.skip(query_params.offset)
cursor = cursor.sort("timestamp", -1)
# Get results
results = []
async for reading in cursor:
reading["_id"] = str(reading["_id"])
results.append(reading)
# Get total count
total_count = await self.db.sensor_readings.count_documents(query)
return {
"data": results,
"total_count": total_count,
"query": query_params.__dict__ if hasattr(query_params, '__dict__') else {},
"execution_time_ms": 0 # Placeholder
}
except Exception as e:
logger.error(f"Error executing data query: {e}")
raise
async def get_analytics_summary(self, hours: int = 24) -> Dict[str, Any]:
"""Get comprehensive analytics summary"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Get basic statistics
pipeline = [
{
"$match": {
"created_at": {"$gte": start_time}
}
},
{
"$group": {
"_id": None,
"total_readings": {"$sum": 1},
"average_value": {"$avg": "$value"},
"min_value": {"$min": "$value"},
"max_value": {"$max": "$value"},
"unique_sensors": {"$addToSet": "$sensor_id"}
}
}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
stats = await cursor.to_list(length=1)
base_stats = stats[0] if stats else {
"total_readings": 0,
"average_value": 0,
"min_value": 0,
"max_value": 0,
"unique_sensors": []
}
# Get room-level statistics
room_stats = await self._get_room_analytics(hours)
# Get energy trends
energy_trends = await self._get_energy_trends(hours)
return {
"period_hours": hours,
"timestamp": datetime.utcnow().isoformat(),
"total_readings": base_stats["total_readings"],
"unique_sensors": len(base_stats["unique_sensors"]),
"value_statistics": {
"average": round(base_stats["average_value"], 2) if base_stats["average_value"] else 0,
"minimum": base_stats["min_value"],
"maximum": base_stats["max_value"]
},
"room_statistics": room_stats,
"energy_trends": energy_trends
}
except Exception as e:
logger.error(f"Error getting analytics summary: {e}")
raise
async def get_energy_analytics(self, hours: int = 24, room: Optional[str] = None) -> Dict[str, Any]:
"""Get energy-specific analytics"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Build query
query = {"created_at": {"$gte": start_time}}
if room:
query["room"] = room
# Energy consumption over time
pipeline = [
{"$match": query},
{
"$group": {
"_id": {
"hour": {"$hour": "$created_at"},
"date": {"$dateToString": {"format": "%Y-%m-%d", "date": "$created_at"}}
},
"total_energy": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{"$sort": {"_id.date": 1, "_id.hour": 1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
hourly_data = []
async for data in cursor:
hourly_data.append({
"hour": data["_id"]["hour"],
"date": data["_id"]["date"],
"total_energy": data["total_energy"],
"reading_count": data["reading_count"]
})
# Peak consumption analysis
peak_analysis = await self._get_peak_consumption_analysis(query)
# Energy efficiency metrics
efficiency_metrics = await self._get_efficiency_metrics(query)
return {
"period_hours": hours,
"room": room,
"timestamp": datetime.utcnow().isoformat(),
"hourly_consumption": hourly_data,
"peak_analysis": peak_analysis,
"efficiency_metrics": efficiency_metrics,
"total_consumption": sum(item["total_energy"] for item in hourly_data)
}
except Exception as e:
logger.error(f"Error getting energy analytics: {e}")
raise
async def _get_room_analytics(self, hours: int) -> Dict[str, Any]:
"""Get room-level analytics"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
pipeline = [
{
"$match": {
"created_at": {"$gte": start_time},
"room": {"$ne": None}
}
},
{
"$group": {
"_id": "$room",
"total_readings": {"$sum": 1},
"total_energy": {"$sum": "$value"},
"average_energy": {"$avg": "$value"},
"unique_sensors": {"$addToSet": "$sensor_id"}
}
},
{"$sort": {"total_energy": -1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
room_data = []
async for room in cursor:
room_data.append({
"room": room["_id"],
"total_readings": room["total_readings"],
"total_energy": room["total_energy"],
"average_energy": round(room["average_energy"], 2),
"sensor_count": len(room["unique_sensors"])
})
return {
"by_room": room_data,
"total_rooms": len(room_data)
}
except Exception as e:
logger.error(f"Error getting room analytics: {e}")
return {"by_room": [], "total_rooms": 0}
async def _get_energy_trends(self, hours: int) -> Dict[str, Any]:
"""Get energy consumption trends"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Get current period data
current_query = {"created_at": {"$gte": start_time}}
current_cursor = self.db.sensor_readings.aggregate([
{"$match": current_query},
{"$group": {"_id": None, "total": {"$sum": "$value"}, "count": {"$sum": 1}}}
])
current_data = await current_cursor.to_list(length=1)
current_total = current_data[0]["total"] if current_data else 0
current_count = current_data[0]["count"] if current_data else 0
# Get previous period for comparison
previous_start = start_time - timedelta(hours=hours)
previous_query = {
"created_at": {"$gte": previous_start, "$lt": start_time}
}
previous_cursor = self.db.sensor_readings.aggregate([
{"$match": previous_query},
{"$group": {"_id": None, "total": {"$sum": "$value"}, "count": {"$sum": 1}}}
])
previous_data = await previous_cursor.to_list(length=1)
previous_total = previous_data[0]["total"] if previous_data else 0
# Calculate trend
if previous_total > 0:
trend_percentage = ((current_total - previous_total) / previous_total) * 100
else:
trend_percentage = 0
return {
"current_period": {
"total_energy": current_total,
"reading_count": current_count,
"average_per_reading": current_total / current_count if current_count > 0 else 0
},
"previous_period": {
"total_energy": previous_total
},
"trend": {
"percentage_change": round(trend_percentage, 2),
"direction": "up" if trend_percentage > 0 else "down" if trend_percentage < 0 else "stable"
}
}
except Exception as e:
logger.error(f"Error getting energy trends: {e}")
return {}
async def _get_peak_consumption_analysis(self, base_query: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze peak consumption patterns"""
try:
pipeline = [
{"$match": base_query},
{
"$group": {
"_id": {"$hour": "$created_at"},
"total_consumption": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{"$sort": {"total_consumption": -1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
hourly_consumption = await cursor.to_list(length=None)
if not hourly_consumption:
return {"peak_hour": None, "peak_consumption": 0, "hourly_pattern": []}
peak_data = hourly_consumption[0]
return {
"peak_hour": peak_data["_id"],
"peak_consumption": peak_data["total_consumption"],
"hourly_pattern": [
{
"hour": item["_id"],
"consumption": item["total_consumption"],
"reading_count": item["reading_count"]
}
for item in hourly_consumption
]
}
except Exception as e:
logger.error(f"Error analyzing peak consumption: {e}")
return {"peak_hour": None, "peak_consumption": 0, "hourly_pattern": []}
async def _get_efficiency_metrics(self, base_query: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate energy efficiency metrics"""
try:
# Average consumption per sensor
pipeline = [
{"$match": base_query},
{
"$group": {
"_id": "$sensor_id",
"total_consumption": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{
"$group": {
"_id": None,
"average_per_sensor": {"$avg": "$total_consumption"},
"sensor_count": {"$sum": 1},
"min_consumption": {"$min": "$total_consumption"},
"max_consumption": {"$max": "$total_consumption"}
}
}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
efficiency_data = await cursor.to_list(length=1)
if not efficiency_data:
return {
"average_per_sensor": 0,
"sensor_count": 0,
"efficiency_score": 0,
"variation_coefficient": 0
}
data = efficiency_data[0]
# Calculate efficiency score (lower variation = higher efficiency)
if data["average_per_sensor"] > 0:
variation_coefficient = (data["max_consumption"] - data["min_consumption"]) / data["average_per_sensor"]
efficiency_score = max(0, 100 - (variation_coefficient * 10)) # Scale to 0-100
else:
variation_coefficient = 0
efficiency_score = 100
return {
"average_per_sensor": round(data["average_per_sensor"], 2),
"sensor_count": data["sensor_count"],
"efficiency_score": round(efficiency_score, 1),
"variation_coefficient": round(variation_coefficient, 2)
}
except Exception as e:
logger.error(f"Error calculating efficiency metrics: {e}")
return {
"average_per_sensor": 0,
"sensor_count": 0,
"efficiency_score": 0,
"variation_coefficient": 0
}

View File

@@ -0,0 +1,66 @@
"""
Database connection and management for sensor service
"""
import asyncio
import logging
from motor.motor_asyncio import AsyncIOMotorClient
import redis.asyncio as redis
from typing import Optional
import os
logger = logging.getLogger(__name__)
# Global database connections
mongo_client: Optional[AsyncIOMotorClient] = None
redis_client: Optional[redis.Redis] = None
database = None
async def connect_to_mongo():
"""Connect to MongoDB"""
global mongo_client, database
try:
mongo_url = os.getenv("MONGO_URL", "mongodb://admin:password123@mongodb:27017/energy_dashboard_sensors?authSource=admin")
mongo_client = AsyncIOMotorClient(mongo_url)
database = mongo_client.energy_dashboard_sensors
# Test connection
await mongo_client.admin.command('ping')
logger.info("Connected to MongoDB successfully")
except Exception as e:
logger.error(f"Failed to connect to MongoDB: {e}")
raise
async def close_mongo_connection():
"""Close MongoDB connection"""
global mongo_client
if mongo_client:
mongo_client.close()
logger.info("Closed MongoDB connection")
async def connect_to_redis():
"""Connect to Redis"""
global redis_client
try:
redis_url = os.getenv("REDIS_URL", "redis://redis:6379")
redis_client = redis.from_url(redis_url, decode_responses=True)
# Test connection
await redis_client.ping()
logger.info("Connected to Redis successfully")
except Exception as e:
logger.error(f"Failed to connect to Redis: {e}")
raise
async def get_database():
"""Get database instance"""
return database
async def get_redis():
"""Get Redis client instance"""
return redis_client

View File

@@ -16,7 +16,8 @@ import json
from models import (
SensorReading, SensorMetadata, RoomMetrics, SystemEvent, DataQuery, DataResponse,
SensorType, SensorStatus, CO2Status, OccupancyLevel, HealthResponse
SensorType, SensorStatus, CO2Status, OccupancyLevel, HealthResponse,
Room, RoomCreate, RoomUpdate, RoomInfo
)
from database import connect_to_mongo, close_mongo_connection, get_database, connect_to_redis, get_redis
from sensor_service import SensorService
@@ -38,6 +39,12 @@ async def lifespan(app: FastAPI):
await connect_to_mongo()
await connect_to_redis()
# Initialize default rooms if none exist
db = await get_database()
redis_client = await get_redis()
room_service = RoomService(db, redis_client)
await room_service.initialize_default_rooms()
# Start background tasks
asyncio.create_task(redis_subscriber_task())
asyncio.create_task(room_metrics_aggregation_task())
@@ -250,6 +257,19 @@ async def delete_sensor(
raise HTTPException(status_code=500, detail="Internal server error")
# Room Management
@app.get("/rooms/names")
async def get_room_names(service: RoomService = Depends(get_room_service)):
"""Get simple list of room names for dropdowns"""
try:
room_names = await service.get_all_room_names()
return {
"rooms": room_names,
"count": len(room_names)
}
except Exception as e:
logger.error(f"Error getting room names: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/rooms")
async def get_rooms(service: RoomService = Depends(get_room_service)):
"""Get all rooms with sensor counts and metrics"""
@@ -265,16 +285,16 @@ async def get_rooms(service: RoomService = Depends(get_room_service)):
@app.post("/rooms")
async def create_room(
room_data: dict,
room_data: RoomCreate,
service: RoomService = Depends(get_room_service)
):
"""Create a new room"""
try:
result = await service.create_room(room_data)
result = await service.create_room(room_data.dict())
return {
"message": "Room created successfully",
"room": room_data.get("name"),
"created_at": result.get("created_at")
"room": result["name"],
"created_at": result["created_at"]
}
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
@@ -282,6 +302,40 @@ async def create_room(
logger.error(f"Error creating room: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.put("/rooms/{room_name}")
async def update_room(
room_name: str,
room_data: RoomUpdate,
service: RoomService = Depends(get_room_service)
):
"""Update an existing room"""
try:
result = await service.update_room(room_name, room_data.dict(exclude_unset=True))
return {
"message": "Room updated successfully",
"room": result["name"],
"updated_at": result["updated_at"],
"modified": result["modified"]
}
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
logger.error(f"Error updating room {room_name}: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.delete("/rooms/{room_name}")
async def delete_room(room_name: str, service: RoomService = Depends(get_room_service)):
"""Delete a room"""
try:
result = await service.delete_room(room_name)
return {
"message": "Room deleted successfully",
**result
}
except Exception as e:
logger.error(f"Error deleting room {room_name}: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/rooms/{room_name}")
async def get_room(room_name: str, service: RoomService = Depends(get_room_service)):
"""Get detailed room information"""

View File

@@ -296,19 +296,82 @@ class AnalyticsSummary(BaseModel):
datetime: lambda v: v.isoformat()
}
# Room Management Models
class Room(BaseModel):
"""Room model for database storage and API responses"""
name: str = Field(..., description="Unique room name")
description: Optional[str] = Field(None, description="Room description")
floor: Optional[str] = Field(None, description="Floor designation")
building: Optional[str] = Field(None, description="Building name")
area: Optional[float] = Field(None, description="Room area in square meters")
capacity: Optional[int] = Field(None, description="Maximum occupancy")
room_type: Optional[str] = Field(None, description="Room type (office, meeting, storage, etc.)")
# Metadata
created_at: datetime = Field(default_factory=datetime.utcnow, description="Room creation timestamp")
updated_at: datetime = Field(default_factory=datetime.utcnow, description="Room update timestamp")
class Config:
json_encoders = {
datetime: lambda v: v.isoformat() if v else None
}
class RoomCreate(BaseModel):
"""Model for creating new rooms"""
name: str = Field(..., description="Unique room name", min_length=1, max_length=100)
description: Optional[str] = Field(None, description="Room description", max_length=500)
floor: Optional[str] = Field(None, description="Floor designation", max_length=50)
building: Optional[str] = Field(None, description="Building name", max_length=100)
area: Optional[float] = Field(None, description="Room area in square meters", gt=0)
capacity: Optional[int] = Field(None, description="Maximum occupancy", gt=0)
room_type: Optional[str] = Field(None, description="Room type", max_length=50)
class RoomUpdate(BaseModel):
"""Model for updating existing rooms"""
description: Optional[str] = Field(None, description="Room description", max_length=500)
floor: Optional[str] = Field(None, description="Floor designation", max_length=50)
building: Optional[str] = Field(None, description="Building name", max_length=100)
area: Optional[float] = Field(None, description="Room area in square meters", gt=0)
capacity: Optional[int] = Field(None, description="Maximum occupancy", gt=0)
room_type: Optional[str] = Field(None, description="Room type", max_length=50)
class RoomInfo(BaseModel):
"""Comprehensive room information for API responses"""
name: str = Field(..., description="Room name")
description: Optional[str] = Field(None, description="Room description")
floor: Optional[str] = Field(None, description="Floor designation")
building: Optional[str] = Field(None, description="Building name")
area: Optional[float] = Field(None, description="Room area in square meters")
capacity: Optional[int] = Field(None, description="Maximum occupancy")
room_type: Optional[str] = Field(None, description="Room type")
# Runtime information
sensor_count: int = Field(0, description="Number of sensors in room")
active_sensors: int = Field(0, description="Number of active sensors")
last_updated: Optional[datetime] = Field(None, description="Last metrics update")
# Timestamps
created_at: datetime = Field(..., description="Room creation timestamp")
updated_at: datetime = Field(..., description="Room update timestamp")
class Config:
json_encoders = {
datetime: lambda v: v.isoformat() if v else None
}
class HealthResponse(BaseModel):
"""Health check response"""
service: str
status: str
timestamp: datetime
version: str
# Additional service-specific health metrics
total_sensors: Optional[int] = None
active_sensors: Optional[int] = None
total_rooms: Optional[int] = None
websocket_connections: Optional[int] = None
class Config:
json_encoders = {
datetime: lambda v: v.isoformat()

View File

@@ -0,0 +1,467 @@
"""
Room service for managing rooms and room-level metrics
"""
import logging
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import json
logger = logging.getLogger(__name__)
class RoomService:
"""Service for managing rooms and room-level analytics"""
def __init__(self, db, redis_client):
self.db = db
self.redis = redis_client
async def get_all_room_names(self) -> List[str]:
"""Get a simple list of all room names for dropdowns/selections"""
try:
# Get rooms from the rooms collection
room_cursor = self.db.rooms.find({}, {"name": 1})
room_names = set()
async for room in room_cursor:
room_names.add(room["name"])
# Also get rooms that exist only in sensor data (legacy support)
sensor_cursor = self.db.sensors.find(
{"room": {"$ne": None, "$exists": True}},
{"room": 1}
)
async for sensor in sensor_cursor:
if sensor.get("room"):
room_names.add(sensor["room"])
# Convert to sorted list
return sorted(list(room_names))
except Exception as e:
logger.error(f"Error getting room names: {e}")
raise
async def initialize_default_rooms(self) -> None:
"""Initialize default rooms if none exist"""
try:
# Check if any rooms exist
room_count = await self.db.rooms.count_documents({})
if room_count == 0:
# Create default rooms
default_rooms = [
{"name": "Conference Room A", "description": "Main conference room", "room_type": "meeting"},
{"name": "Conference Room B", "description": "Secondary conference room", "room_type": "meeting"},
{"name": "Office Floor 1", "description": "First floor office space", "room_type": "office"},
{"name": "Office Floor 2", "description": "Second floor office space", "room_type": "office"},
{"name": "Kitchen", "description": "Employee kitchen and break room", "room_type": "common"},
{"name": "Lobby", "description": "Main entrance and reception", "room_type": "common"},
{"name": "Server Room", "description": "IT equipment room", "room_type": "technical"},
{"name": "Storage Room", "description": "General storage", "room_type": "storage"},
{"name": "Meeting Room 1", "description": "Small meeting room", "room_type": "meeting"},
{"name": "Meeting Room 2", "description": "Small meeting room", "room_type": "meeting"}
]
for room_data in default_rooms:
room_doc = {
**room_data,
"created_at": datetime.utcnow(),
"updated_at": datetime.utcnow()
}
await self.db.rooms.insert_one(room_doc)
logger.info(f"Initialized {len(default_rooms)} default rooms")
except Exception as e:
logger.error(f"Error initializing default rooms: {e}")
raise
async def get_rooms(self) -> List[Dict[str, Any]]:
"""Get all rooms with sensor counts and metrics"""
try:
# Get unique rooms from sensors
pipeline = [
{"$group": {"_id": "$room", "sensor_count": {"$sum": 1}}},
{"$match": {"_id": {"$ne": None}}}
]
cursor = self.db.sensors.aggregate(pipeline)
rooms = []
async for room_data in cursor:
room_name = room_data["_id"]
# Get latest room metrics
latest_metrics = await self._get_latest_room_metrics(room_name)
room_info = {
"name": room_name,
"sensor_count": room_data["sensor_count"],
"latest_metrics": latest_metrics,
"last_updated": latest_metrics.get("timestamp") if latest_metrics else None
}
rooms.append(room_info)
return rooms
except Exception as e:
logger.error(f"Error getting rooms: {e}")
raise
async def create_room(self, room_data: Dict[str, Any]) -> Dict[str, Any]:
"""Create a new room"""
try:
room_doc = {
"name": room_data.get("name"),
"description": room_data.get("description", ""),
"floor": room_data.get("floor"),
"building": room_data.get("building"),
"area": room_data.get("area"),
"capacity": room_data.get("capacity"),
"room_type": room_data.get("room_type"),
"created_at": datetime.utcnow(),
"updated_at": datetime.utcnow()
}
# Validate required fields
if not room_doc["name"] or not room_doc["name"].strip():
raise ValueError("Room name is required")
# Check if room already exists
existing = await self.db.rooms.find_one({"name": room_doc["name"]})
if existing:
raise ValueError(f"Room {room_doc['name']} already exists")
result = await self.db.rooms.insert_one(room_doc)
return {
"id": str(result.inserted_id),
"name": room_doc["name"],
"created_at": room_doc["created_at"]
}
except Exception as e:
logger.error(f"Error creating room: {e}")
raise
async def update_room(self, room_name: str, room_data: Dict[str, Any]) -> Dict[str, Any]:
"""Update an existing room"""
try:
# Check if room exists
existing = await self.db.rooms.find_one({"name": room_name})
if not existing:
raise ValueError(f"Room {room_name} not found")
# Prepare update document
update_doc = {
"updated_at": datetime.utcnow()
}
# Update only provided fields
for field in ["description", "floor", "building", "area", "capacity", "room_type"]:
if field in room_data and room_data[field] is not None:
update_doc[field] = room_data[field]
# Perform update
result = await self.db.rooms.update_one(
{"name": room_name},
{"$set": update_doc}
)
if result.modified_count == 0:
logger.warning(f"No changes made to room {room_name}")
return {
"name": room_name,
"updated_at": update_doc["updated_at"],
"modified": result.modified_count > 0
}
except Exception as e:
logger.error(f"Error updating room: {e}")
raise
async def delete_room(self, room_name: str) -> Dict[str, Any]:
"""Delete a room and optionally reassign sensors"""
try:
# Check if room exists
existing = await self.db.rooms.find_one({"name": room_name})
# Check for sensors in this room
sensors_in_room = await self.db.sensors.find({"room": room_name}).to_list(None)
if sensors_in_room:
# Update sensors to have null room (don't delete sensors)
await self.db.sensors.update_many(
{"room": room_name},
{"$unset": {"room": ""}}
)
# Delete room from rooms collection if it exists
room_deleted = False
if existing:
result = await self.db.rooms.delete_one({"name": room_name})
room_deleted = result.deleted_count > 0
# Delete room metrics
metrics_result = await self.db.room_metrics.delete_many({"room": room_name})
return {
"room": room_name,
"room_deleted": room_deleted,
"sensors_updated": len(sensors_in_room),
"metrics_deleted": metrics_result.deleted_count
}
except Exception as e:
logger.error(f"Error deleting room: {e}")
raise
async def get_room_details(self, room_name: str) -> Optional[Dict[str, Any]]:
"""Get detailed room information"""
try:
# Get room info
room = await self.db.rooms.find_one({"name": room_name})
if not room:
# Create basic room info from sensor data
sensors = await self.db.sensors.find({"room": room_name}).to_list(None)
if not sensors:
return None
room = {
"name": room_name,
"description": f"Room with {len(sensors)} sensors",
"sensor_count": len(sensors)
}
else:
room["_id"] = str(room["_id"])
# Get sensor count
sensor_count = await self.db.sensors.count_documents({"room": room_name})
room["sensor_count"] = sensor_count
# Get sensors in this room
cursor = self.db.sensors.find({"room": room_name})
sensors = []
async for sensor in cursor:
sensor["_id"] = str(sensor["_id"])
sensors.append(sensor)
room["sensors"] = sensors
# Get recent room metrics
room["recent_metrics"] = await self._get_recent_room_metrics(room_name, hours=24)
return room
except Exception as e:
logger.error(f"Error getting room details: {e}")
raise
async def get_room_data(self, room_name: str, start_time: Optional[int] = None,
end_time: Optional[int] = None, limit: int = 100) -> Dict[str, Any]:
"""Get historical data for a room"""
try:
# Get room metrics
room_query = {"room": room_name}
if start_time or end_time:
room_query["timestamp"] = {}
if start_time:
room_query["timestamp"]["$gte"] = start_time
if end_time:
room_query["timestamp"]["$lte"] = end_time
room_metrics_cursor = self.db.room_metrics.find(room_query).sort("timestamp", -1).limit(limit)
room_metrics = []
async for metric in room_metrics_cursor:
metric["_id"] = str(metric["_id"])
room_metrics.append(metric)
# Get sensor readings for this room
sensor_query = {"room": room_name}
if start_time or end_time:
sensor_query["timestamp"] = {}
if start_time:
sensor_query["timestamp"]["$gte"] = start_time
if end_time:
sensor_query["timestamp"]["$lte"] = end_time
sensor_readings_cursor = self.db.sensor_readings.find(sensor_query).sort("timestamp", -1).limit(limit)
sensor_readings = []
async for reading in sensor_readings_cursor:
reading["_id"] = str(reading["_id"])
sensor_readings.append(reading)
return {
"room_metrics": room_metrics,
"sensor_readings": sensor_readings
}
except Exception as e:
logger.error(f"Error getting room data: {e}")
raise
async def update_room_metrics(self, sensor_data):
"""Update room-level metrics when sensor data is received"""
try:
if not sensor_data.room:
return
# Calculate room-level aggregates
room_metrics = await self._calculate_room_metrics(sensor_data.room)
if room_metrics:
# Store room metrics
metrics_doc = {
"room": sensor_data.room,
"timestamp": sensor_data.timestamp,
"total_energy": room_metrics.get("total_energy", 0),
"average_temperature": room_metrics.get("avg_temperature"),
"co2_level": room_metrics.get("co2_level"),
"occupancy_estimate": room_metrics.get("occupancy_estimate"),
"sensor_count": room_metrics.get("sensor_count", 0),
"created_at": datetime.utcnow()
}
await self.db.room_metrics.insert_one(metrics_doc)
# Cache latest metrics
if self.redis:
cache_key = f"room:{sensor_data.room}:latest_metrics"
await self.redis.setex(cache_key, 3600, json.dumps(metrics_doc, default=str))
except Exception as e:
logger.error(f"Error updating room metrics: {e}")
async def aggregate_all_room_metrics(self):
"""Aggregate metrics for all rooms"""
try:
# Get all unique rooms
pipeline = [{"$group": {"_id": "$room"}}]
cursor = self.db.sensors.aggregate(pipeline)
async for room_data in cursor:
room_name = room_data["_id"]
if room_name:
await self._calculate_room_metrics(room_name)
except Exception as e:
logger.error(f"Error aggregating room metrics: {e}")
async def _get_latest_room_metrics(self, room_name: str) -> Optional[Dict[str, Any]]:
"""Get latest room metrics"""
try:
# Try Redis cache first
if self.redis:
cache_key = f"room:{room_name}:latest_metrics"
cached = await self.redis.get(cache_key)
if cached:
return json.loads(cached)
# Fall back to database
latest = await self.db.room_metrics.find_one(
{"room": room_name},
sort=[("timestamp", -1)]
)
if latest:
latest["_id"] = str(latest["_id"])
return latest
return None
except Exception as e:
logger.error(f"Error getting latest room metrics: {e}")
return None
async def _get_recent_room_metrics(self, room_name: str, hours: int = 24) -> List[Dict[str, Any]]:
"""Get recent room metrics"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
cursor = self.db.room_metrics.find({
"room": room_name,
"created_at": {"$gte": start_time}
}).sort("timestamp", -1)
metrics = []
async for metric in cursor:
metric["_id"] = str(metric["_id"])
metrics.append(metric)
return metrics
except Exception as e:
logger.error(f"Error getting recent room metrics: {e}")
return []
async def _calculate_room_metrics(self, room_name: str) -> Dict[str, Any]:
"""Calculate aggregated metrics for a room"""
try:
# Get recent sensor readings (last 5 minutes)
five_minutes_ago = datetime.utcnow() - timedelta(minutes=5)
pipeline = [
{
"$match": {
"room": room_name,
"created_at": {"$gte": five_minutes_ago}
}
},
{
"$group": {
"_id": "$sensor_id",
"latest_value": {"$last": "$value"},
"sensor_type": {"$last": "$sensor_type"} if "sensor_type" in ["$first", "$last"] else {"$first": "energy"},
"unit": {"$last": "$unit"}
}
}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
total_energy = 0
temperatures = []
co2_levels = []
sensor_count = 0
async for sensor_data in cursor:
sensor_count += 1
value = sensor_data.get("latest_value", 0)
sensor_type = sensor_data.get("sensor_type", "energy")
if sensor_type == "energy" or "energy" in str(sensor_data.get("unit", "")).lower():
total_energy += value
elif sensor_type == "temperature":
temperatures.append(value)
elif sensor_type == "co2":
co2_levels.append(value)
metrics = {
"total_energy": total_energy,
"sensor_count": sensor_count,
"avg_temperature": sum(temperatures) / len(temperatures) if temperatures else None,
"co2_level": sum(co2_levels) / len(co2_levels) if co2_levels else None,
"occupancy_estimate": self._estimate_occupancy(sensor_count, total_energy)
}
return metrics
except Exception as e:
logger.error(f"Error calculating room metrics: {e}")
return {}
def _estimate_occupancy(self, sensor_count: int, total_energy: float) -> Optional[str]:
"""Estimate occupancy level based on energy consumption"""
if total_energy == 0:
return "vacant"
elif total_energy < sensor_count * 50: # Low threshold
return "low"
elif total_energy < sensor_count * 150: # Medium threshold
return "medium"
else:
return "high"

View File

@@ -0,0 +1,251 @@
"""
Sensor service business logic
"""
import logging
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import json
logger = logging.getLogger(__name__)
class SensorService:
"""Service for managing sensors and sensor data"""
def __init__(self, db, redis_client):
self.db = db
self.redis = redis_client
async def get_sensors(self, room: Optional[str] = None, sensor_type: Optional[str] = None, status: Optional[str] = None) -> List[Dict[str, Any]]:
"""Get sensors with optional filtering"""
try:
query = {}
if room:
query["room"] = room
if sensor_type:
query["sensor_type"] = sensor_type
if status:
query["status"] = status
cursor = self.db.sensors.find(query)
sensors = []
async for sensor in cursor:
sensor["_id"] = str(sensor["_id"])
sensors.append(sensor)
return sensors
except Exception as e:
logger.error(f"Error getting sensors: {e}")
raise
async def get_sensor_details(self, sensor_id: str) -> Optional[Dict[str, Any]]:
"""Get detailed sensor information"""
try:
sensor = await self.db.sensors.find_one({"sensor_id": sensor_id})
if sensor:
sensor["_id"] = str(sensor["_id"])
# Get recent readings
recent_readings = await self.get_sensor_data(sensor_id, limit=10)
sensor["recent_readings"] = recent_readings.get("readings", [])
return sensor
return None
except Exception as e:
logger.error(f"Error getting sensor details: {e}")
raise
async def get_sensor_data(self, sensor_id: str, start_time: Optional[int] = None,
end_time: Optional[int] = None, limit: int = 100, offset: int = 0) -> Dict[str, Any]:
"""Get historical sensor data"""
try:
query = {"sensor_id": sensor_id}
if start_time or end_time:
query["timestamp"] = {}
if start_time:
query["timestamp"]["$gte"] = start_time
if end_time:
query["timestamp"]["$lte"] = end_time
# Get total count
total_count = await self.db.sensor_readings.count_documents(query)
# Get readings
cursor = self.db.sensor_readings.find(query).sort("timestamp", -1).skip(offset).limit(limit)
readings = []
async for reading in cursor:
reading["_id"] = str(reading["_id"])
readings.append(reading)
return {
"readings": readings,
"total_count": total_count,
"execution_time_ms": 0 # Placeholder
}
except Exception as e:
logger.error(f"Error getting sensor data: {e}")
raise
async def create_sensor(self, sensor_data) -> Dict[str, Any]:
"""Create a new sensor"""
try:
# Check if sensor already exists
existing = await self.db.sensors.find_one({"sensor_id": sensor_data.sensor_id})
if existing:
raise ValueError(f"Sensor {sensor_data.sensor_id} already exists")
# Create sensor document
sensor_doc = {
"sensor_id": sensor_data.sensor_id,
"name": sensor_data.name,
"sensor_type": sensor_data.sensor_type.value if hasattr(sensor_data.sensor_type, 'value') else str(sensor_data.sensor_type),
"room": sensor_data.room,
"location": sensor_data.location if hasattr(sensor_data, 'location') else None,
"status": "active",
"created_at": datetime.utcnow(),
"updated_at": datetime.utcnow()
}
result = await self.db.sensors.insert_one(sensor_doc)
return {"created_at": datetime.utcnow()}
except Exception as e:
logger.error(f"Error creating sensor: {e}")
raise
async def update_sensor(self, sensor_id: str, update_data: Dict[str, Any]) -> bool:
"""Update sensor metadata"""
try:
update_data["updated_at"] = datetime.utcnow()
result = await self.db.sensors.update_one(
{"sensor_id": sensor_id},
{"$set": update_data}
)
return result.modified_count > 0
except Exception as e:
logger.error(f"Error updating sensor: {e}")
raise
async def delete_sensor(self, sensor_id: str) -> Dict[str, Any]:
"""Delete a sensor and its data"""
try:
# Delete readings
readings_result = await self.db.sensor_readings.delete_many({"sensor_id": sensor_id})
# Delete sensor
await self.db.sensors.delete_one({"sensor_id": sensor_id})
return {"readings_deleted": readings_result.deleted_count}
except Exception as e:
logger.error(f"Error deleting sensor: {e}")
raise
async def ingest_sensor_data(self, sensor_data) -> Dict[str, Any]:
"""Ingest real-time sensor data"""
try:
# Create reading document
reading_doc = {
"sensor_id": sensor_data.sensor_id,
"timestamp": sensor_data.timestamp,
"value": sensor_data.value,
"unit": sensor_data.unit if hasattr(sensor_data, 'unit') else None,
"room": sensor_data.room if hasattr(sensor_data, 'room') else None,
"created_at": datetime.utcnow()
}
# Store in database
await self.db.sensor_readings.insert_one(reading_doc)
# Cache recent value in Redis
if self.redis:
cache_key = f"sensor:{sensor_data.sensor_id}:latest"
await self.redis.setex(cache_key, 3600, json.dumps(reading_doc, default=str))
return {"success": True}
except Exception as e:
logger.error(f"Error ingesting sensor data: {e}")
raise
async def export_data(self, start_time: int, end_time: int, sensor_ids: Optional[str] = None,
format: str = "json") -> Dict[str, Any]:
"""Export sensor data"""
try:
query = {
"timestamp": {"$gte": start_time, "$lte": end_time}
}
if sensor_ids:
sensor_list = [s.strip() for s in sensor_ids.split(",")]
query["sensor_id"] = {"$in": sensor_list}
cursor = self.db.sensor_readings.find(query).sort("timestamp", 1)
readings = []
async for reading in cursor:
reading["_id"] = str(reading["_id"])
readings.append(reading)
return {
"format": format,
"data": readings,
"total_records": len(readings),
"period": {"start": start_time, "end": end_time}
}
except Exception as e:
logger.error(f"Error exporting data: {e}")
raise
async def get_events(self, severity: Optional[str] = None, event_type: Optional[str] = None,
hours: int = 24, limit: int = 50) -> List[Dict[str, Any]]:
"""Get system events"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
query = {"timestamp": {"$gte": start_time}}
if severity:
query["severity"] = severity
if event_type:
query["event_type"] = event_type
cursor = self.db.system_events.find(query).sort("timestamp", -1).limit(limit)
events = []
async for event in cursor:
event["_id"] = str(event["_id"])
events.append(event)
return events
except Exception as e:
logger.error(f"Error getting events: {e}")
return []
async def cleanup_old_data(self, cutoff_date: datetime):
"""Clean up old sensor data"""
try:
result = await self.db.sensor_readings.delete_many({
"created_at": {"$lt": cutoff_date}
})
logger.info(f"Cleaned up {result.deleted_count} old sensor readings")
except Exception as e:
logger.error(f"Error cleaning up old data: {e}")
raise