Files
sac4cps-backend/microservices/sensor-service/analytics_service.py
rafaeldpsilva 02a0d54e14 Add room and analytics services with CRUD API endpoints
- Implement RoomService for room management and metrics - Add
AnalyticsService for sensor data analytics and trends - Extend models
with Room, RoomCreate, RoomUpdate, RoomInfo - Add room CRUD endpoints to
FastAPI app - Add database connection logic for MongoDB and Redis -
Refactor sensor service logic into SensorService class
2025-09-22 15:13:14 +01:00

377 lines
14 KiB
Python

"""
Analytics service for processing sensor data and generating insights
"""
import logging
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import json
logger = logging.getLogger(__name__)
class AnalyticsService:
"""Service for analytics and data processing"""
def __init__(self, db, redis_client):
self.db = db
self.redis = redis_client
async def query_data(self, query_params) -> Dict[str, Any]:
"""Execute advanced data query"""
try:
# Build query
query = {}
if hasattr(query_params, 'sensor_ids') and query_params.sensor_ids:
query["sensor_id"] = {"$in": query_params.sensor_ids}
if hasattr(query_params, 'start_time') and query_params.start_time:
query.setdefault("timestamp", {})["$gte"] = query_params.start_time
if hasattr(query_params, 'end_time') and query_params.end_time:
query.setdefault("timestamp", {})["$lte"] = query_params.end_time
# Execute query
cursor = self.db.sensor_readings.find(query)
if hasattr(query_params, 'limit') and query_params.limit:
cursor = cursor.limit(query_params.limit)
if hasattr(query_params, 'offset') and query_params.offset:
cursor = cursor.skip(query_params.offset)
cursor = cursor.sort("timestamp", -1)
# Get results
results = []
async for reading in cursor:
reading["_id"] = str(reading["_id"])
results.append(reading)
# Get total count
total_count = await self.db.sensor_readings.count_documents(query)
return {
"data": results,
"total_count": total_count,
"query": query_params.__dict__ if hasattr(query_params, '__dict__') else {},
"execution_time_ms": 0 # Placeholder
}
except Exception as e:
logger.error(f"Error executing data query: {e}")
raise
async def get_analytics_summary(self, hours: int = 24) -> Dict[str, Any]:
"""Get comprehensive analytics summary"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Get basic statistics
pipeline = [
{
"$match": {
"created_at": {"$gte": start_time}
}
},
{
"$group": {
"_id": None,
"total_readings": {"$sum": 1},
"average_value": {"$avg": "$value"},
"min_value": {"$min": "$value"},
"max_value": {"$max": "$value"},
"unique_sensors": {"$addToSet": "$sensor_id"}
}
}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
stats = await cursor.to_list(length=1)
base_stats = stats[0] if stats else {
"total_readings": 0,
"average_value": 0,
"min_value": 0,
"max_value": 0,
"unique_sensors": []
}
# Get room-level statistics
room_stats = await self._get_room_analytics(hours)
# Get energy trends
energy_trends = await self._get_energy_trends(hours)
return {
"period_hours": hours,
"timestamp": datetime.utcnow().isoformat(),
"total_readings": base_stats["total_readings"],
"unique_sensors": len(base_stats["unique_sensors"]),
"value_statistics": {
"average": round(base_stats["average_value"], 2) if base_stats["average_value"] else 0,
"minimum": base_stats["min_value"],
"maximum": base_stats["max_value"]
},
"room_statistics": room_stats,
"energy_trends": energy_trends
}
except Exception as e:
logger.error(f"Error getting analytics summary: {e}")
raise
async def get_energy_analytics(self, hours: int = 24, room: Optional[str] = None) -> Dict[str, Any]:
"""Get energy-specific analytics"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Build query
query = {"created_at": {"$gte": start_time}}
if room:
query["room"] = room
# Energy consumption over time
pipeline = [
{"$match": query},
{
"$group": {
"_id": {
"hour": {"$hour": "$created_at"},
"date": {"$dateToString": {"format": "%Y-%m-%d", "date": "$created_at"}}
},
"total_energy": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{"$sort": {"_id.date": 1, "_id.hour": 1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
hourly_data = []
async for data in cursor:
hourly_data.append({
"hour": data["_id"]["hour"],
"date": data["_id"]["date"],
"total_energy": data["total_energy"],
"reading_count": data["reading_count"]
})
# Peak consumption analysis
peak_analysis = await self._get_peak_consumption_analysis(query)
# Energy efficiency metrics
efficiency_metrics = await self._get_efficiency_metrics(query)
return {
"period_hours": hours,
"room": room,
"timestamp": datetime.utcnow().isoformat(),
"hourly_consumption": hourly_data,
"peak_analysis": peak_analysis,
"efficiency_metrics": efficiency_metrics,
"total_consumption": sum(item["total_energy"] for item in hourly_data)
}
except Exception as e:
logger.error(f"Error getting energy analytics: {e}")
raise
async def _get_room_analytics(self, hours: int) -> Dict[str, Any]:
"""Get room-level analytics"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
pipeline = [
{
"$match": {
"created_at": {"$gte": start_time},
"room": {"$ne": None}
}
},
{
"$group": {
"_id": "$room",
"total_readings": {"$sum": 1},
"total_energy": {"$sum": "$value"},
"average_energy": {"$avg": "$value"},
"unique_sensors": {"$addToSet": "$sensor_id"}
}
},
{"$sort": {"total_energy": -1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
room_data = []
async for room in cursor:
room_data.append({
"room": room["_id"],
"total_readings": room["total_readings"],
"total_energy": room["total_energy"],
"average_energy": round(room["average_energy"], 2),
"sensor_count": len(room["unique_sensors"])
})
return {
"by_room": room_data,
"total_rooms": len(room_data)
}
except Exception as e:
logger.error(f"Error getting room analytics: {e}")
return {"by_room": [], "total_rooms": 0}
async def _get_energy_trends(self, hours: int) -> Dict[str, Any]:
"""Get energy consumption trends"""
try:
start_time = datetime.utcnow() - timedelta(hours=hours)
# Get current period data
current_query = {"created_at": {"$gte": start_time}}
current_cursor = self.db.sensor_readings.aggregate([
{"$match": current_query},
{"$group": {"_id": None, "total": {"$sum": "$value"}, "count": {"$sum": 1}}}
])
current_data = await current_cursor.to_list(length=1)
current_total = current_data[0]["total"] if current_data else 0
current_count = current_data[0]["count"] if current_data else 0
# Get previous period for comparison
previous_start = start_time - timedelta(hours=hours)
previous_query = {
"created_at": {"$gte": previous_start, "$lt": start_time}
}
previous_cursor = self.db.sensor_readings.aggregate([
{"$match": previous_query},
{"$group": {"_id": None, "total": {"$sum": "$value"}, "count": {"$sum": 1}}}
])
previous_data = await previous_cursor.to_list(length=1)
previous_total = previous_data[0]["total"] if previous_data else 0
# Calculate trend
if previous_total > 0:
trend_percentage = ((current_total - previous_total) / previous_total) * 100
else:
trend_percentage = 0
return {
"current_period": {
"total_energy": current_total,
"reading_count": current_count,
"average_per_reading": current_total / current_count if current_count > 0 else 0
},
"previous_period": {
"total_energy": previous_total
},
"trend": {
"percentage_change": round(trend_percentage, 2),
"direction": "up" if trend_percentage > 0 else "down" if trend_percentage < 0 else "stable"
}
}
except Exception as e:
logger.error(f"Error getting energy trends: {e}")
return {}
async def _get_peak_consumption_analysis(self, base_query: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze peak consumption patterns"""
try:
pipeline = [
{"$match": base_query},
{
"$group": {
"_id": {"$hour": "$created_at"},
"total_consumption": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{"$sort": {"total_consumption": -1}}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
hourly_consumption = await cursor.to_list(length=None)
if not hourly_consumption:
return {"peak_hour": None, "peak_consumption": 0, "hourly_pattern": []}
peak_data = hourly_consumption[0]
return {
"peak_hour": peak_data["_id"],
"peak_consumption": peak_data["total_consumption"],
"hourly_pattern": [
{
"hour": item["_id"],
"consumption": item["total_consumption"],
"reading_count": item["reading_count"]
}
for item in hourly_consumption
]
}
except Exception as e:
logger.error(f"Error analyzing peak consumption: {e}")
return {"peak_hour": None, "peak_consumption": 0, "hourly_pattern": []}
async def _get_efficiency_metrics(self, base_query: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate energy efficiency metrics"""
try:
# Average consumption per sensor
pipeline = [
{"$match": base_query},
{
"$group": {
"_id": "$sensor_id",
"total_consumption": {"$sum": "$value"},
"reading_count": {"$sum": 1}
}
},
{
"$group": {
"_id": None,
"average_per_sensor": {"$avg": "$total_consumption"},
"sensor_count": {"$sum": 1},
"min_consumption": {"$min": "$total_consumption"},
"max_consumption": {"$max": "$total_consumption"}
}
}
]
cursor = self.db.sensor_readings.aggregate(pipeline)
efficiency_data = await cursor.to_list(length=1)
if not efficiency_data:
return {
"average_per_sensor": 0,
"sensor_count": 0,
"efficiency_score": 0,
"variation_coefficient": 0
}
data = efficiency_data[0]
# Calculate efficiency score (lower variation = higher efficiency)
if data["average_per_sensor"] > 0:
variation_coefficient = (data["max_consumption"] - data["min_consumption"]) / data["average_per_sensor"]
efficiency_score = max(0, 100 - (variation_coefficient * 10)) # Scale to 0-100
else:
variation_coefficient = 0
efficiency_score = 100
return {
"average_per_sensor": round(data["average_per_sensor"], 2),
"sensor_count": data["sensor_count"],
"efficiency_score": round(efficiency_score, 1),
"variation_coefficient": round(variation_coefficient, 2)
}
except Exception as e:
logger.error(f"Error calculating efficiency metrics: {e}")
return {
"average_per_sensor": 0,
"sensor_count": 0,
"efficiency_score": 0,
"variation_coefficient": 0
}