Implement dynamic energy data collections per building
- Store energy data in separate MongoDB collections for each SLGs/Community/Building directory - Update FTP monitor and database manager to track directory paths and select appropriate collections - Add collection stats to database statistics API - Update sensor and token services for improved API consistency - Add 'rb' (rebuild and restart) option to deploy.sh script
This commit is contained in:
354
data_simulator_enhanced.py
Normal file
354
data_simulator_enhanced.py
Normal file
@@ -0,0 +1,354 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Enhanced Data Simulator for Bootstrap Sensors
|
||||
Generates realistic real-time sensor data for the bootstrap sensors created by bootstrap_sensors.py
|
||||
"""
|
||||
|
||||
import redis
|
||||
import time
|
||||
import random
|
||||
import json
|
||||
import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Dict, List, Any
|
||||
import math
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Redis configuration
|
||||
REDIS_HOST = 'localhost'
|
||||
REDIS_PORT = 6379
|
||||
REDIS_CHANNEL = "energy_data"
|
||||
|
||||
# Bootstrap sensor IDs (must match bootstrap_sensors.py)
|
||||
BOOTSTRAP_SENSORS = {
|
||||
# Living Room Sensors
|
||||
"lr_energy_001": {"type": "energy", "room": "living_room", "base_value": 2.5, "variance": 1.2},
|
||||
"lr_co2_001": {"type": "co2", "room": "living_room", "base_value": 420, "variance": 80},
|
||||
"lr_temp_001": {"type": "temperature", "room": "living_room", "base_value": 22.0, "variance": 2.0},
|
||||
|
||||
# Kitchen Sensors
|
||||
"kt_energy_001": {"type": "energy", "room": "kitchen", "base_value": 3.8, "variance": 2.1},
|
||||
"kt_humidity_001": {"type": "humidity", "room": "kitchen", "base_value": 45.0, "variance": 15.0},
|
||||
"kt_temp_001": {"type": "temperature", "room": "kitchen", "base_value": 24.0, "variance": 3.0},
|
||||
|
||||
# Bedroom Sensors
|
||||
"br_energy_001": {"type": "energy", "room": "bedroom", "base_value": 1.2, "variance": 0.8},
|
||||
"br_co2_001": {"type": "co2", "room": "bedroom", "base_value": 480, "variance": 120},
|
||||
"br_temp_001": {"type": "temperature", "room": "bedroom", "base_value": 20.5, "variance": 1.5},
|
||||
|
||||
# Office Sensors
|
||||
"of_energy_001": {"type": "energy", "room": "office", "base_value": 2.1, "variance": 1.5},
|
||||
"of_co2_001": {"type": "co2", "room": "office", "base_value": 450, "variance": 100},
|
||||
"of_motion_001": {"type": "motion", "room": "office", "base_value": 0, "variance": 1},
|
||||
|
||||
# Bathroom Sensors
|
||||
"bt_humidity_001": {"type": "humidity", "room": "bathroom", "base_value": 65.0, "variance": 20.0},
|
||||
"bt_temp_001": {"type": "temperature", "room": "bathroom", "base_value": 23.0, "variance": 2.5},
|
||||
|
||||
# Garage Sensors
|
||||
"gr_energy_001": {"type": "energy", "room": "garage", "base_value": 0.8, "variance": 0.5},
|
||||
"gr_motion_001": {"type": "motion", "room": "garage", "base_value": 0, "variance": 1}
|
||||
}
|
||||
|
||||
class SensorDataGenerator:
|
||||
"""Generates realistic sensor data with time-based patterns"""
|
||||
|
||||
def __init__(self):
|
||||
self.start_time = time.time()
|
||||
self.motion_states = {} # Track motion sensor states
|
||||
|
||||
# Initialize motion states
|
||||
for sensor_id, config in BOOTSTRAP_SENSORS.items():
|
||||
if config["type"] == "motion":
|
||||
self.motion_states[sensor_id] = {"active": False, "last_change": time.time()}
|
||||
|
||||
def get_time_factor(self) -> float:
|
||||
"""Get time-based multiplier for realistic daily patterns"""
|
||||
current_hour = datetime.now().hour
|
||||
|
||||
# Energy usage patterns (higher during day, lower at night)
|
||||
if 6 <= current_hour <= 22: # Daytime
|
||||
return 1.0 + 0.3 * math.sin((current_hour - 6) * math.pi / 16)
|
||||
else: # Nighttime
|
||||
return 0.3 + 0.2 * random.random()
|
||||
|
||||
def get_occupancy_factor(self, room: str) -> float:
|
||||
"""Get occupancy-based multiplier for different rooms"""
|
||||
current_hour = datetime.now().hour
|
||||
|
||||
occupancy_patterns = {
|
||||
"living_room": 1.2 if 18 <= current_hour <= 23 else 0.8,
|
||||
"kitchen": 1.5 if 7 <= current_hour <= 9 or 17 <= current_hour <= 20 else 0.6,
|
||||
"bedroom": 1.3 if 22 <= current_hour or current_hour <= 7 else 0.4,
|
||||
"office": 1.4 if 9 <= current_hour <= 17 else 0.3,
|
||||
"bathroom": 1.0, # Consistent usage
|
||||
"garage": 0.8 if 7 <= current_hour <= 9 or 17 <= current_hour <= 19 else 0.2
|
||||
}
|
||||
|
||||
return occupancy_patterns.get(room, 1.0)
|
||||
|
||||
def generate_energy_reading(self, sensor_id: str, config: Dict) -> Dict[str, Any]:
|
||||
"""Generate realistic energy consumption reading"""
|
||||
base_value = config["base_value"]
|
||||
variance = config["variance"]
|
||||
room = config["room"]
|
||||
|
||||
# Apply time and occupancy factors
|
||||
time_factor = self.get_time_factor()
|
||||
occupancy_factor = self.get_occupancy_factor(room)
|
||||
|
||||
# Add some randomness
|
||||
random_factor = 1.0 + (random.random() - 0.5) * 0.4
|
||||
|
||||
# Calculate final value
|
||||
value = base_value * time_factor * occupancy_factor * random_factor
|
||||
value = max(0.1, value) # Ensure minimum consumption
|
||||
|
||||
return {
|
||||
"sensor_id": sensor_id,
|
||||
"room": room,
|
||||
"sensor_type": "energy",
|
||||
"timestamp": int(time.time()),
|
||||
"energy": {
|
||||
"value": round(value, 3),
|
||||
"unit": "kWh"
|
||||
},
|
||||
"metadata": {
|
||||
"time_factor": round(time_factor, 2),
|
||||
"occupancy_factor": round(occupancy_factor, 2)
|
||||
}
|
||||
}
|
||||
|
||||
def generate_co2_reading(self, sensor_id: str, config: Dict) -> Dict[str, Any]:
|
||||
"""Generate realistic CO2 level reading"""
|
||||
base_value = config["base_value"]
|
||||
variance = config["variance"]
|
||||
room = config["room"]
|
||||
|
||||
# CO2 increases with occupancy
|
||||
occupancy_factor = self.get_occupancy_factor(room)
|
||||
co2_increase = (occupancy_factor - 0.5) * 150
|
||||
|
||||
# Add random fluctuation
|
||||
random_variation = (random.random() - 0.5) * variance
|
||||
|
||||
value = base_value + co2_increase + random_variation
|
||||
value = max(350, min(2000, value)) # Realistic CO2 range
|
||||
|
||||
return {
|
||||
"sensor_id": sensor_id,
|
||||
"room": room,
|
||||
"sensor_type": "co2",
|
||||
"timestamp": int(time.time()),
|
||||
"co2": {
|
||||
"value": round(value, 1),
|
||||
"unit": "ppm"
|
||||
},
|
||||
"metadata": {
|
||||
"quality_level": "good" if value < 600 else "moderate" if value < 1000 else "poor"
|
||||
}
|
||||
}
|
||||
|
||||
def generate_temperature_reading(self, sensor_id: str, config: Dict) -> Dict[str, Any]:
|
||||
"""Generate realistic temperature reading"""
|
||||
base_value = config["base_value"]
|
||||
variance = config["variance"]
|
||||
room = config["room"]
|
||||
|
||||
# Temperature varies with time of day and occupancy
|
||||
current_hour = datetime.now().hour
|
||||
daily_variation = 2 * math.sin((current_hour - 6) * math.pi / 12)
|
||||
|
||||
occupancy_factor = self.get_occupancy_factor(room)
|
||||
occupancy_heat = (occupancy_factor - 0.5) * 1.5
|
||||
|
||||
random_variation = (random.random() - 0.5) * variance
|
||||
|
||||
value = base_value + daily_variation + occupancy_heat + random_variation
|
||||
|
||||
return {
|
||||
"sensor_id": sensor_id,
|
||||
"room": room,
|
||||
"sensor_type": "temperature",
|
||||
"timestamp": int(time.time()),
|
||||
"temperature": {
|
||||
"value": round(value, 1),
|
||||
"unit": "°C"
|
||||
}
|
||||
}
|
||||
|
||||
def generate_humidity_reading(self, sensor_id: str, config: Dict) -> Dict[str, Any]:
|
||||
"""Generate realistic humidity reading"""
|
||||
base_value = config["base_value"]
|
||||
variance = config["variance"]
|
||||
room = config["room"]
|
||||
|
||||
# Humidity patterns based on room usage
|
||||
if room == "bathroom":
|
||||
# Higher spikes during usage times
|
||||
current_hour = datetime.now().hour
|
||||
if 7 <= current_hour <= 9 or 19 <= current_hour <= 22:
|
||||
usage_spike = random.uniform(10, 25)
|
||||
else:
|
||||
usage_spike = 0
|
||||
elif room == "kitchen":
|
||||
# Cooking increases humidity
|
||||
current_hour = datetime.now().hour
|
||||
if 17 <= current_hour <= 20:
|
||||
usage_spike = random.uniform(5, 15)
|
||||
else:
|
||||
usage_spike = 0
|
||||
else:
|
||||
usage_spike = 0
|
||||
|
||||
random_variation = (random.random() - 0.5) * variance
|
||||
value = base_value + usage_spike + random_variation
|
||||
value = max(20, min(95, value)) # Realistic humidity range
|
||||
|
||||
return {
|
||||
"sensor_id": sensor_id,
|
||||
"room": room,
|
||||
"sensor_type": "humidity",
|
||||
"timestamp": int(time.time()),
|
||||
"humidity": {
|
||||
"value": round(value, 1),
|
||||
"unit": "%"
|
||||
}
|
||||
}
|
||||
|
||||
def generate_motion_reading(self, sensor_id: str, config: Dict) -> Dict[str, Any]:
|
||||
"""Generate realistic motion detection reading"""
|
||||
room = config["room"]
|
||||
current_time = time.time()
|
||||
|
||||
# Get current state
|
||||
if sensor_id not in self.motion_states:
|
||||
self.motion_states[sensor_id] = {"active": False, "last_change": current_time}
|
||||
|
||||
state = self.motion_states[sensor_id]
|
||||
|
||||
# Determine if motion should be detected based on occupancy patterns
|
||||
occupancy_factor = self.get_occupancy_factor(room)
|
||||
motion_probability = occupancy_factor * 0.3 # 30% chance when occupied
|
||||
|
||||
# Change state based on probability and time since last change
|
||||
time_since_change = current_time - state["last_change"]
|
||||
|
||||
if state["active"]:
|
||||
# If motion is active, chance to stop after some time
|
||||
if time_since_change > 30: # At least 30 seconds of motion
|
||||
if random.random() < 0.4: # 40% chance to stop
|
||||
state["active"] = False
|
||||
state["last_change"] = current_time
|
||||
else:
|
||||
# If no motion, chance to start based on occupancy
|
||||
if time_since_change > 10: # At least 10 seconds of no motion
|
||||
if random.random() < motion_probability:
|
||||
state["active"] = True
|
||||
state["last_change"] = current_time
|
||||
|
||||
return {
|
||||
"sensor_id": sensor_id,
|
||||
"room": room,
|
||||
"sensor_type": "motion",
|
||||
"timestamp": int(time.time()),
|
||||
"motion": {
|
||||
"value": 1 if state["active"] else 0,
|
||||
"unit": "detected"
|
||||
},
|
||||
"metadata": {
|
||||
"duration_seconds": int(time_since_change) if state["active"] else 0
|
||||
}
|
||||
}
|
||||
|
||||
def generate_sensor_reading(self, sensor_id: str) -> Dict[str, Any]:
|
||||
"""Generate appropriate reading based on sensor type"""
|
||||
if sensor_id not in BOOTSTRAP_SENSORS:
|
||||
logger.warning(f"Unknown sensor ID: {sensor_id}")
|
||||
return None
|
||||
|
||||
config = BOOTSTRAP_SENSORS[sensor_id]
|
||||
sensor_type = config["type"]
|
||||
|
||||
if sensor_type == "energy":
|
||||
return self.generate_energy_reading(sensor_id, config)
|
||||
elif sensor_type == "co2":
|
||||
return self.generate_co2_reading(sensor_id, config)
|
||||
elif sensor_type == "temperature":
|
||||
return self.generate_temperature_reading(sensor_id, config)
|
||||
elif sensor_type == "humidity":
|
||||
return self.generate_humidity_reading(sensor_id, config)
|
||||
elif sensor_type == "motion":
|
||||
return self.generate_motion_reading(sensor_id, config)
|
||||
else:
|
||||
logger.warning(f"Unknown sensor type: {sensor_type}")
|
||||
return None
|
||||
|
||||
def main():
|
||||
"""Main simulation loop"""
|
||||
logger.info("=== Starting Enhanced Data Simulator ===")
|
||||
|
||||
# Connect to Redis
|
||||
try:
|
||||
redis_client = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=0, decode_responses=True)
|
||||
redis_client.ping()
|
||||
logger.info(f"Successfully connected to Redis at {REDIS_HOST}:{REDIS_PORT}")
|
||||
except redis.exceptions.ConnectionError as e:
|
||||
logger.error(f"Could not connect to Redis: {e}")
|
||||
return
|
||||
|
||||
# Initialize data generator
|
||||
generator = SensorDataGenerator()
|
||||
|
||||
logger.info(f"Loaded {len(BOOTSTRAP_SENSORS)} bootstrap sensors")
|
||||
logger.info(f"Publishing to Redis channel: '{REDIS_CHANNEL}'")
|
||||
logger.info("Press Ctrl+C to stop simulation")
|
||||
|
||||
sensor_ids = list(BOOTSTRAP_SENSORS.keys())
|
||||
|
||||
try:
|
||||
while True:
|
||||
sensors_produced = []
|
||||
for a in range(5):
|
||||
|
||||
# Generate data for a random sensor
|
||||
sensor_id = random.choice(sensor_ids)
|
||||
sensors_produced.append(sensor_id)
|
||||
reading = generator.generate_sensor_reading(sensor_id)
|
||||
|
||||
if reading:
|
||||
# Publish to Redis
|
||||
payload = json.dumps(reading)
|
||||
redis_client.publish(REDIS_CHANNEL, payload)
|
||||
|
||||
# Log the reading
|
||||
sensor_type = reading["sensor_type"]
|
||||
room = reading["room"]
|
||||
value_info = ""
|
||||
|
||||
if "energy" in reading:
|
||||
value_info = f"{reading['energy']['value']} {reading['energy']['unit']}"
|
||||
elif "co2" in reading:
|
||||
value_info = f"{reading['co2']['value']} {reading['co2']['unit']}"
|
||||
elif "temperature" in reading:
|
||||
value_info = f"{reading['temperature']['value']} {reading['temperature']['unit']}"
|
||||
elif "humidity" in reading:
|
||||
value_info = f"{reading['humidity']['value']} {reading['humidity']['unit']}"
|
||||
elif "motion" in reading:
|
||||
value_info = f"{'DETECTED' if reading['motion']['value'] else 'CLEAR'}"
|
||||
|
||||
logger.info(f"📊 {sensor_id} ({room}/{sensor_type}): {value_info}")
|
||||
|
||||
# Random interval between readings (1-5 seconds)
|
||||
time.sleep(random.uniform(1, 5))
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Stopping data simulation...")
|
||||
except Exception as e:
|
||||
logger.error(f"Simulation error: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user