first commit

This commit is contained in:
rafaeldpsilva
2025-12-10 12:32:12 +00:00
commit adbbf6bf50
3442 changed files with 2725681 additions and 0 deletions

22
web-app/node_modules/suncalc/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,22 @@
Copyright (c) 2014, Vladimir Agafonkin
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

205
web-app/node_modules/suncalc/README.md generated vendored Normal file
View File

@@ -0,0 +1,205 @@
SunCalc
=======
[![Build Status](https://travis-ci.org/mourner/suncalc.svg?branch=master)](https://travis-ci.org/mourner/suncalc)
SunCalc is a tiny BSD-licensed JavaScript library for calculating sun position,
sunlight phases (times for sunrise, sunset, dusk, etc.),
moon position and lunar phase for the given location and time,
created by [Vladimir Agafonkin](http://agafonkin.com/en) ([@mourner](https://github.com/mourner))
as a part of the [SunCalc.net project](http://suncalc.net).
Most calculations are based on the formulas given in the excellent Astronomy Answers articles
about [position of the sun](http://aa.quae.nl/en/reken/zonpositie.html)
and [the planets](http://aa.quae.nl/en/reken/hemelpositie.html).
You can read about different twilight phases calculated by SunCalc
in the [Twilight article on Wikipedia](http://en.wikipedia.org/wiki/Twilight).
## Usage example
```javascript
// get today's sunlight times for London
var times = SunCalc.getTimes(new Date(), 51.5, -0.1);
// format sunrise time from the Date object
var sunriseStr = times.sunrise.getHours() + ':' + times.sunrise.getMinutes();
// get position of the sun (azimuth and altitude) at today's sunrise
var sunrisePos = SunCalc.getPosition(times.sunrise, 51.5, -0.1);
// get sunrise azimuth in degrees
var sunriseAzimuth = sunrisePos.azimuth * 180 / Math.PI;
```
SunCalc is also available as an NPM package:
```bash
$ npm install suncalc
```
```js
var SunCalc = require('suncalc');
```
## Reference
### Sunlight times
```javascript
SunCalc.getTimes(/*Date*/ date, /*Number*/ latitude, /*Number*/ longitude, /*Number (default=0)*/ height)
```
Returns an object with the following properties (each is a `Date` object):
| Property | Description |
| --------------- | ------------------------------------------------------------------------ |
| `sunrise` | sunrise (top edge of the sun appears on the horizon) |
| `sunriseEnd` | sunrise ends (bottom edge of the sun touches the horizon) |
| `goldenHourEnd` | morning golden hour (soft light, best time for photography) ends |
| `solarNoon` | solar noon (sun is in the highest position) |
| `goldenHour` | evening golden hour starts |
| `sunsetStart` | sunset starts (bottom edge of the sun touches the horizon) |
| `sunset` | sunset (sun disappears below the horizon, evening civil twilight starts) |
| `dusk` | dusk (evening nautical twilight starts) |
| `nauticalDusk` | nautical dusk (evening astronomical twilight starts) |
| `night` | night starts (dark enough for astronomical observations) |
| `nadir` | nadir (darkest moment of the night, sun is in the lowest position) |
| `nightEnd` | night ends (morning astronomical twilight starts) |
| `nauticalDawn` | nautical dawn (morning nautical twilight starts) |
| `dawn` | dawn (morning nautical twilight ends, morning civil twilight starts) |
```javascript
SunCalc.addTime(/*Number*/ angleInDegrees, /*String*/ morningName, /*String*/ eveningName)
```
Adds a custom time when the sun reaches the given angle to results returned by `SunCalc.getTimes`.
`SunCalc.times` property contains all currently defined times.
### Sun position
```javascript
SunCalc.getPosition(/*Date*/ timeAndDate, /*Number*/ latitude, /*Number*/ longitude)
```
Returns an object with the following properties:
* `altitude`: sun altitude above the horizon in radians,
e.g. `0` at the horizon and `PI/2` at the zenith (straight over your head)
* `azimuth`: sun azimuth in radians (direction along the horizon, measured from south to west),
e.g. `0` is south and `Math.PI * 3/4` is northwest
### Moon position
```javascript
SunCalc.getMoonPosition(/*Date*/ timeAndDate, /*Number*/ latitude, /*Number*/ longitude)
```
Returns an object with the following properties:
* `altitude`: moon altitude above the horizon in radians
* `azimuth`: moon azimuth in radians
* `distance`: distance to moon in kilometers
* `parallacticAngle`: parallactic angle of the moon in radians
### Moon illumination
```javascript
SunCalc.getMoonIllumination(/*Date*/ timeAndDate)
```
Returns an object with the following properties:
* `fraction`: illuminated fraction of the moon; varies from `0.0` (new moon) to `1.0` (full moon)
* `phase`: moon phase; varies from `0.0` to `1.0`, described below
* `angle`: midpoint angle in radians of the illuminated limb of the moon reckoned eastward from the north point of the disk;
the moon is waxing if the angle is negative, and waning if positive
Moon phase value should be interpreted like this:
| Phase | Name |
| -----:| --------------- |
| 0 | New Moon |
| | Waxing Crescent |
| 0.25 | First Quarter |
| | Waxing Gibbous |
| 0.5 | Full Moon |
| | Waning Gibbous |
| 0.75 | Last Quarter |
| | Waning Crescent |
By subtracting the `parallacticAngle` from the `angle` one can get the zenith angle of the moons bright limb (anticlockwise).
The zenith angle can be used do draw the moon shape from the observers perspective (e.g. moon lying on its back).
### Moon rise and set times
```js
SunCalc.getMoonTimes(/*Date*/ date, /*Number*/ latitude, /*Number*/ longitude[, inUTC])
```
Returns an object with the following properties:
* `rise`: moonrise time as `Date`
* `set`: moonset time as `Date`
* `alwaysUp`: `true` if the moon never rises/sets and is always _above_ the horizon during the day
* `alwaysDown`: `true` if the moon is always _below_ the horizon
By default, it will search for moon rise and set during local user's day (frou 0 to 24 hours).
If `inUTC` is set to true, it will instead search the specified date from 0 to 24 UTC hours.
## Changelog
#### 1.8.0 — Dec 22, 2016
- Improved precision of moonrise/moonset calculations.
- Added `parallacticAngle` calculation to `getMoonPosition`.
- Default to today's date in `getMoonIllumination`.
- Fixed incompatibility when using Browserify/Webpack together with a global AMD loader.
#### 1.7.0 — Nov 11, 2015
- Added `inUTC` argument to `getMoonTimes`.
#### 1.6.0 — Oct 27, 2014
- Added `SunCalc.getMoonTimes` for calculating moon rise and set times.
#### 1.5.1 — May 16, 2014
- Exposed `SunCalc.times` property with defined daylight times.
- Slightly improved `SunCalc.getTimes` performance.
#### 1.4.0 — Apr 10, 2014
- Added `phase` to `SunCalc.getMoonIllumination` results (moon phase).
- Switched from mocha to tape for tests.
#### 1.3.0 — Feb 21, 2014
- Added `SunCalc.getMoonIllumination` (in place of `getMoonFraction`) that returns an object with `fraction` and `angle`
(angle of illuminated limb of the moon).
#### 1.2.0 — Mar 07, 2013
- Added `SunCalc.getMoonFraction` function that returns illuminated fraction of the moon.
#### 1.1.0 — Mar 06, 2013
- Added `SunCalc.getMoonPosition` function.
- Added nadir (darkest time of the day, middle of the night).
- Added tests.
#### 1.0.0 — Dec 07, 2011
- Published to NPM.
- Added `SunCalc.addTime` function.
#### 0.0.0 — Aug 25, 2011
- First commit.

53
web-app/node_modules/suncalc/package.json generated vendored Normal file
View File

@@ -0,0 +1,53 @@
{
"name": "suncalc",
"version": "1.9.0",
"description": "A tiny JavaScript library for calculating sun/moon positions and phases.",
"homepage": "https://github.com/mourner/suncalc",
"keywords": [
"sun",
"astronomy",
"math",
"calculation",
"sunrise",
"sunset",
"twilight",
"moon",
"illumination"
],
"author": "Vladimir Agafonkin",
"repository": {
"type": "git",
"url": "git://github.com/mourner/suncalc.git"
},
"main": "suncalc.js",
"devDependencies": {
"eslint": "^8.8.0",
"eslint-config-mourner": "^2.0.1",
"tape": "^5.5.0"
},
"eslintConfig": {
"extends": "mourner",
"rules": {
"indent": 0,
"array-bracket-spacing": 0,
"strict": 0,
"brace-style": 0
},
"env": {
"amd": true
}
},
"files": [
"suncalc.js"
],
"scripts": {
"pretest": "eslint suncalc.js test.js",
"test": "node test.js",
"prepublishOnly": "npm test"
},
"jshintConfig": {
"quotmark": "single",
"trailing": true,
"unused": true
}
}

317
web-app/node_modules/suncalc/suncalc.js generated vendored Normal file
View File

@@ -0,0 +1,317 @@
/*
(c) 2011-2015, Vladimir Agafonkin
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
https://github.com/mourner/suncalc
*/
(function () { 'use strict';
// shortcuts for easier to read formulas
var PI = Math.PI,
sin = Math.sin,
cos = Math.cos,
tan = Math.tan,
asin = Math.asin,
atan = Math.atan2,
acos = Math.acos,
rad = PI / 180;
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
// date/time constants and conversions
var dayMs = 1000 * 60 * 60 * 24,
J1970 = 2440588,
J2000 = 2451545;
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); }
function toDays(date) { return toJulian(date) - J2000; }
// general calculations for position
var e = rad * 23.4397; // obliquity of the Earth
function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
function astroRefraction(h) {
if (h < 0) // the following formula works for positive altitudes only.
h = 0; // if h = -0.08901179 a div/0 would occur.
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
}
// general sun calculations
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
function eclipticLongitude(M) {
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
P = rad * 102.9372; // perihelion of the Earth
return M + C + P + PI;
}
function sunCoords(d) {
var M = solarMeanAnomaly(d),
L = eclipticLongitude(M);
return {
dec: declination(L, 0),
ra: rightAscension(L, 0)
};
}
var SunCalc = {};
// calculates sun position for a given date and latitude/longitude
SunCalc.getPosition = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = sunCoords(d),
H = siderealTime(d, lw) - c.ra;
return {
azimuth: azimuth(H, phi, c.dec),
altitude: altitude(H, phi, c.dec)
};
};
// sun times configuration (angle, morning name, evening name)
var times = SunCalc.times = [
[-0.833, 'sunrise', 'sunset' ],
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
[ -6, 'dawn', 'dusk' ],
[ -12, 'nauticalDawn', 'nauticalDusk'],
[ -18, 'nightEnd', 'night' ],
[ 6, 'goldenHourEnd', 'goldenHour' ]
];
// adds a custom time to the times config
SunCalc.addTime = function (angle, riseName, setName) {
times.push([angle, riseName, setName]);
};
// calculations for sun times
var J0 = 0.0009;
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
// returns set time for the given sun altitude
function getSetJ(h, lw, phi, dec, n, M, L) {
var w = hourAngle(h, phi, dec),
a = approxTransit(w, lw, n);
return solarTransitJ(a, M, L);
}
// calculates sun times for a given date, latitude/longitude, and, optionally,
// the observer height (in meters) relative to the horizon
SunCalc.getTimes = function (date, lat, lng, height) {
height = height || 0;
var lw = rad * -lng,
phi = rad * lat,
dh = observerAngle(height),
d = toDays(date),
n = julianCycle(d, lw),
ds = approxTransit(0, lw, n),
M = solarMeanAnomaly(ds),
L = eclipticLongitude(M),
dec = declination(L, 0),
Jnoon = solarTransitJ(ds, M, L),
i, len, time, h0, Jset, Jrise;
var result = {
solarNoon: fromJulian(Jnoon),
nadir: fromJulian(Jnoon - 0.5)
};
for (i = 0, len = times.length; i < len; i += 1) {
time = times[i];
h0 = (time[0] + dh) * rad;
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise);
result[time[2]] = fromJulian(Jset);
}
return result;
};
// moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
function moonCoords(d) { // geocentric ecliptic coordinates of the moon
var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
M = rad * (134.963 + 13.064993 * d), // mean anomaly
F = rad * (93.272 + 13.229350 * d), // mean distance
l = L + rad * 6.289 * sin(M), // longitude
b = rad * 5.128 * sin(F), // latitude
dt = 385001 - 20905 * cos(M); // distance to the moon in km
return {
ra: rightAscension(l, b),
dec: declination(l, b),
dist: dt
};
}
SunCalc.getMoonPosition = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = moonCoords(d),
H = siderealTime(d, lw) - c.ra,
h = altitude(H, phi, c.dec),
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
h = h + astroRefraction(h); // altitude correction for refraction
return {
azimuth: azimuth(H, phi, c.dec),
altitude: h,
distance: c.dist,
parallacticAngle: pa
};
};
// calculations for illumination parameters of the moon,
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
SunCalc.getMoonIllumination = function (date) {
var d = toDays(date || new Date()),
s = sunCoords(d),
m = moonCoords(d),
sdist = 149598000, // distance from Earth to Sun in km
phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) -
cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
return {
fraction: (1 + cos(inc)) / 2,
phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
angle: angle
};
};
function hoursLater(date, h) {
return new Date(date.valueOf() + h * dayMs / 24);
}
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
SunCalc.getMoonTimes = function (date, lat, lng, inUTC) {
var t = new Date(date);
if (inUTC) t.setUTCHours(0, 0, 0, 0);
else t.setHours(0, 0, 0, 0);
var hc = 0.133 * rad,
h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc,
h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
for (var i = 1; i <= 24; i += 2) {
h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
a = (h0 + h2) / 2 - h1;
b = (h2 - h0) / 2;
xe = -b / (2 * a);
ye = (a * xe + b) * xe + h1;
d = b * b - 4 * a * h1;
roots = 0;
if (d >= 0) {
dx = Math.sqrt(d) / (Math.abs(a) * 2);
x1 = xe - dx;
x2 = xe + dx;
if (Math.abs(x1) <= 1) roots++;
if (Math.abs(x2) <= 1) roots++;
if (x1 < -1) x1 = x2;
}
if (roots === 1) {
if (h0 < 0) rise = i + x1;
else set = i + x1;
} else if (roots === 2) {
rise = i + (ye < 0 ? x2 : x1);
set = i + (ye < 0 ? x1 : x2);
}
if (rise && set) break;
h0 = h2;
}
var result = {};
if (rise) result.rise = hoursLater(t, rise);
if (set) result.set = hoursLater(t, set);
if (!rise && !set) result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
return result;
};
// export as Node module / AMD module / browser variable
if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
else if (typeof define === 'function' && define.amd) define(SunCalc);
else window.SunCalc = SunCalc;
}());