first commit
This commit is contained in:
186
web-app/node_modules/.vite/deps/suncalc.js
generated
vendored
Normal file
186
web-app/node_modules/.vite/deps/suncalc.js
generated
vendored
Normal file
@@ -0,0 +1,186 @@
|
||||
import {
|
||||
__commonJS
|
||||
} from "./chunk-BUSYA2B4.js";
|
||||
|
||||
// node_modules/suncalc/suncalc.js
|
||||
var require_suncalc = __commonJS({
|
||||
"node_modules/suncalc/suncalc.js"(exports, module) {
|
||||
(function() {
|
||||
"use strict";
|
||||
var PI = Math.PI, sin = Math.sin, cos = Math.cos, tan = Math.tan, asin = Math.asin, atan = Math.atan2, acos = Math.acos, rad = PI / 180;
|
||||
var dayMs = 1e3 * 60 * 60 * 24, J1970 = 2440588, J2000 = 2451545;
|
||||
function toJulian(date) {
|
||||
return date.valueOf() / dayMs - 0.5 + J1970;
|
||||
}
|
||||
function fromJulian(j) {
|
||||
return new Date((j + 0.5 - J1970) * dayMs);
|
||||
}
|
||||
function toDays(date) {
|
||||
return toJulian(date) - J2000;
|
||||
}
|
||||
var e = rad * 23.4397;
|
||||
function rightAscension(l, b) {
|
||||
return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l));
|
||||
}
|
||||
function declination(l, b) {
|
||||
return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l));
|
||||
}
|
||||
function azimuth(H, phi, dec) {
|
||||
return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi));
|
||||
}
|
||||
function altitude(H, phi, dec) {
|
||||
return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H));
|
||||
}
|
||||
function siderealTime(d, lw) {
|
||||
return rad * (280.16 + 360.9856235 * d) - lw;
|
||||
}
|
||||
function astroRefraction(h) {
|
||||
if (h < 0)
|
||||
h = 0;
|
||||
return 2967e-7 / Math.tan(h + 312536e-8 / (h + 0.08901179));
|
||||
}
|
||||
function solarMeanAnomaly(d) {
|
||||
return rad * (357.5291 + 0.98560028 * d);
|
||||
}
|
||||
function eclipticLongitude(M) {
|
||||
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 3e-4 * sin(3 * M)), P = rad * 102.9372;
|
||||
return M + C + P + PI;
|
||||
}
|
||||
function sunCoords(d) {
|
||||
var M = solarMeanAnomaly(d), L = eclipticLongitude(M);
|
||||
return {
|
||||
dec: declination(L, 0),
|
||||
ra: rightAscension(L, 0)
|
||||
};
|
||||
}
|
||||
var SunCalc = {};
|
||||
SunCalc.getPosition = function(date, lat, lng) {
|
||||
var lw = rad * -lng, phi = rad * lat, d = toDays(date), c = sunCoords(d), H = siderealTime(d, lw) - c.ra;
|
||||
return {
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: altitude(H, phi, c.dec)
|
||||
};
|
||||
};
|
||||
var times = SunCalc.times = [
|
||||
[-0.833, "sunrise", "sunset"],
|
||||
[-0.3, "sunriseEnd", "sunsetStart"],
|
||||
[-6, "dawn", "dusk"],
|
||||
[-12, "nauticalDawn", "nauticalDusk"],
|
||||
[-18, "nightEnd", "night"],
|
||||
[6, "goldenHourEnd", "goldenHour"]
|
||||
];
|
||||
SunCalc.addTime = function(angle, riseName, setName) {
|
||||
times.push([angle, riseName, setName]);
|
||||
};
|
||||
var J0 = 9e-4;
|
||||
function julianCycle(d, lw) {
|
||||
return Math.round(d - J0 - lw / (2 * PI));
|
||||
}
|
||||
function approxTransit(Ht, lw, n) {
|
||||
return J0 + (Ht + lw) / (2 * PI) + n;
|
||||
}
|
||||
function solarTransitJ(ds, M, L) {
|
||||
return J2000 + ds + 53e-4 * sin(M) - 69e-4 * sin(2 * L);
|
||||
}
|
||||
function hourAngle(h, phi, d) {
|
||||
return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d)));
|
||||
}
|
||||
function observerAngle(height) {
|
||||
return -2.076 * Math.sqrt(height) / 60;
|
||||
}
|
||||
function getSetJ(h, lw, phi, dec, n, M, L) {
|
||||
var w = hourAngle(h, phi, dec), a = approxTransit(w, lw, n);
|
||||
return solarTransitJ(a, M, L);
|
||||
}
|
||||
SunCalc.getTimes = function(date, lat, lng, height) {
|
||||
height = height || 0;
|
||||
var lw = rad * -lng, phi = rad * lat, dh = observerAngle(height), d = toDays(date), n = julianCycle(d, lw), ds = approxTransit(0, lw, n), M = solarMeanAnomaly(ds), L = eclipticLongitude(M), dec = declination(L, 0), Jnoon = solarTransitJ(ds, M, L), i, len, time, h0, Jset, Jrise;
|
||||
var result = {
|
||||
solarNoon: fromJulian(Jnoon),
|
||||
nadir: fromJulian(Jnoon - 0.5)
|
||||
};
|
||||
for (i = 0, len = times.length; i < len; i += 1) {
|
||||
time = times[i];
|
||||
h0 = (time[0] + dh) * rad;
|
||||
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
|
||||
Jrise = Jnoon - (Jset - Jnoon);
|
||||
result[time[1]] = fromJulian(Jrise);
|
||||
result[time[2]] = fromJulian(Jset);
|
||||
}
|
||||
return result;
|
||||
};
|
||||
function moonCoords(d) {
|
||||
var L = rad * (218.316 + 13.176396 * d), M = rad * (134.963 + 13.064993 * d), F = rad * (93.272 + 13.22935 * d), l = L + rad * 6.289 * sin(M), b = rad * 5.128 * sin(F), dt = 385001 - 20905 * cos(M);
|
||||
return {
|
||||
ra: rightAscension(l, b),
|
||||
dec: declination(l, b),
|
||||
dist: dt
|
||||
};
|
||||
}
|
||||
SunCalc.getMoonPosition = function(date, lat, lng) {
|
||||
var lw = rad * -lng, phi = rad * lat, d = toDays(date), c = moonCoords(d), H = siderealTime(d, lw) - c.ra, h = altitude(H, phi, c.dec), pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
|
||||
h = h + astroRefraction(h);
|
||||
return {
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: h,
|
||||
distance: c.dist,
|
||||
parallacticAngle: pa
|
||||
};
|
||||
};
|
||||
SunCalc.getMoonIllumination = function(date) {
|
||||
var d = toDays(date || /* @__PURE__ */ new Date()), s = sunCoords(d), m = moonCoords(d), sdist = 149598e3, phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)), inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)), angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) - cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
|
||||
return {
|
||||
fraction: (1 + cos(inc)) / 2,
|
||||
phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
|
||||
angle
|
||||
};
|
||||
};
|
||||
function hoursLater(date, h) {
|
||||
return new Date(date.valueOf() + h * dayMs / 24);
|
||||
}
|
||||
SunCalc.getMoonTimes = function(date, lat, lng, inUTC) {
|
||||
var t = new Date(date);
|
||||
if (inUTC) t.setUTCHours(0, 0, 0, 0);
|
||||
else t.setHours(0, 0, 0, 0);
|
||||
var hc = 0.133 * rad, h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc, h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
|
||||
for (var i = 1; i <= 24; i += 2) {
|
||||
h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
|
||||
h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
|
||||
a = (h0 + h2) / 2 - h1;
|
||||
b = (h2 - h0) / 2;
|
||||
xe = -b / (2 * a);
|
||||
ye = (a * xe + b) * xe + h1;
|
||||
d = b * b - 4 * a * h1;
|
||||
roots = 0;
|
||||
if (d >= 0) {
|
||||
dx = Math.sqrt(d) / (Math.abs(a) * 2);
|
||||
x1 = xe - dx;
|
||||
x2 = xe + dx;
|
||||
if (Math.abs(x1) <= 1) roots++;
|
||||
if (Math.abs(x2) <= 1) roots++;
|
||||
if (x1 < -1) x1 = x2;
|
||||
}
|
||||
if (roots === 1) {
|
||||
if (h0 < 0) rise = i + x1;
|
||||
else set = i + x1;
|
||||
} else if (roots === 2) {
|
||||
rise = i + (ye < 0 ? x2 : x1);
|
||||
set = i + (ye < 0 ? x1 : x2);
|
||||
}
|
||||
if (rise && set) break;
|
||||
h0 = h2;
|
||||
}
|
||||
var result = {};
|
||||
if (rise) result.rise = hoursLater(t, rise);
|
||||
if (set) result.set = hoursLater(t, set);
|
||||
if (!rise && !set) result[ye > 0 ? "alwaysUp" : "alwaysDown"] = true;
|
||||
return result;
|
||||
};
|
||||
if (typeof exports === "object" && typeof module !== "undefined") module.exports = SunCalc;
|
||||
else if (typeof define === "function" && define.amd) define(SunCalc);
|
||||
else window.SunCalc = SunCalc;
|
||||
})();
|
||||
}
|
||||
});
|
||||
export default require_suncalc();
|
||||
//# sourceMappingURL=suncalc.js.map
|
||||
Reference in New Issue
Block a user